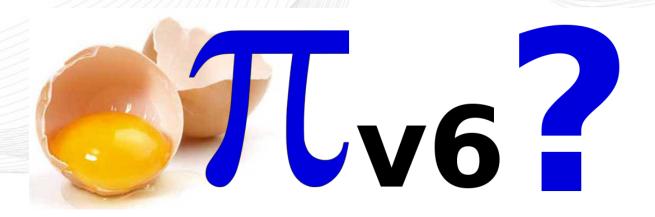
Lunch to Learn "IPv6"

Dennis Penne (FG12), Frank Meyer (FG38b) IT.N Hannover 02. und 16. August 2016

IT.Niedersachsen

Agenda


Teil 1 - Worum geht es?

Teil 2 - IPv6 aus organisatorischer Sicht

Teil 3 - IPv6 aus technischer Sicht

Teil 1

Worum geht es?

Was sind IP-Adressen

- IP steht für "Internet Protokoll"
- Beispiel 195.37.192.131
 - 4 Zahlen (0-255), getrennt durch "."
 - 4 Byte (32 bit) macht ca. 3,7 Mrd. in IP Version 4
- Sie sind der Kern der vernetzten IT
- IT-Geräte brauchen sie zum Kommunizieren
- Sie sind eine begrenzte Ressource!

Überall ist IP!

- Früher: Nur Computer, Server und Router
- Heute: Umfassende Konsolidierung auf IP-Technik
 - Telefone (VoIP), Smartphones, Fernseher (Smart TV, IP-TV), Haustechnik (Smart Meter u.a.), Fahrzeugtechnik (Telematik, "Blackbox"), Leittechnik, Industriesteuerung, Internet Of Things... siehe http://thingful.
 - Geräte sind "allways online"
- IP-Adressen reichen nicht mehr!
 - Seit 2011/2012 sind keine IPv4 mehr verfügba

Deshalb IP Version 6 (IPv6)

- 340 Sextillionen = 3,4·10³⁸ Adressen
- Seit 1998 Internet Standard
- Alle modernen Geräte und Betriebssysteme "sprechen" heute IPv6
 - "Notfalls" können sie auch noch IPv4
- In Deutschland verwenden ca. 20 % der Internet-Nutzer IPv6 (Google, März 2016)
 - Vorreiter sind KabelDeutschland und Telekom

Wann sollen wir IPv6 einführen?

Falsche Frage! -> IPv6 ist schon da! Auch im IT.N !!!

"ipconfig" beim NiC

```
Eingabeaufforderung
Microsoft Windows [Version 6.3.9600]
(c) 2013 Microsoft Corporation. Alle Rechte vorbehalten.
Z:∖>ipconfig
Windows-IP-Konfiguration
Drahtlos-LAN-Adapter LAN-Verbindung* 3:
   Medienstatus.....: Medium getrennt Verbindungsspezifisches DNS-Suffix:
Ethernet-Adapter Bluetooth-Netzwerkverbindung:
   Medienstatus.....: Medium getrennt Verbindungsspezifisches DNS-Suffix:
Mobiler Breitbandadapter Mobiles Breitband:
   Medienstatus....: Medium getrennt
Verbindungsspezifisches DNS-Suffix:
Ethernet-Adapter Ethernet:

      Uerbindungsspezifisches DNS-Swffix:

      Uerbindungslokale IPv6-Adreste : fe80::b8d0:a9b5:a3c7:c988x4

      IPv4-Adresse : 10.25.30.176

      Subnetzmaske : 255.25.221.8

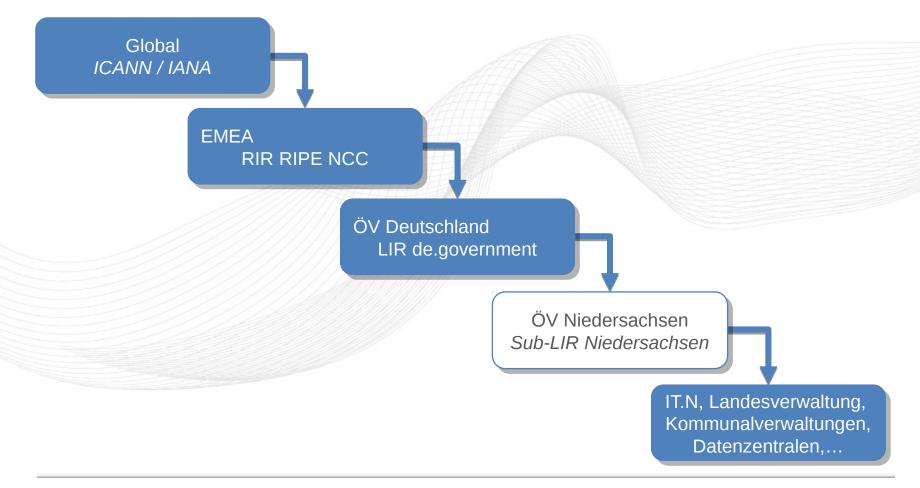
      Standardgateway : 10.25.0.1

Drahtlos-LAN-Adapter WiFi:
   Medienstatus......: Medium getrennt
Verbindungsspezifisches DNS-Suffix:
Tunneladapter isatap.{E8B6CBED-1BF3-47E7-B9C4-972C4A404600}:
   Medienstatus.....: Medium getrennt Verbindungsspezifisches DNS-Suffix:
Z:\>_
```

Mail-Header bei Exchange

```
Received: from LV-MX-11001.LV.ads.niedersachsen.de ([10.17.101.51]) by
LV-H1-MX-002.LV.ads.niedersachsen.de with Microsoft SMTPSVC(6.0.3790.4675);
Thu, 30 Jun 2016 15:34:37 +0200
Received: from LV-MX-21002.LV.ads.niedersachsen.de (10.17.101.56) by
LV-MX-11001.LV.ads.niedersachsen.de (10.17.101.51) with Microsoft SMTP Server
(TLS) id 14.3.279.2; Thu, 30 Jun 2016 15:34:37 +0200
Beceived: from LV-MX-12203.LV.ads.niedersachsen.de
([fe80::46c:30b1:dlab:7432]) by LV-MX-21002.LV.ads.niedersachsen.de
([fe80::f41c:a89c:67ac:55e%17]) with mapi id 14.03.0279.002; Thu, 30 Jun 2016
15:34:37 +0200
From: "Meyer, Frank (IT.N)" <Frank.Meyer@it.niedersachsen.de>
To: "frank@meyer.ws" <frank@meyer.ws>
Subject: test
Thread-Topic: test
Thread-Index: AdHS1CQhVqlZdltAQ024qRr8tVwdhg==
```

Also...


Wir müssen uns JETZT mit IPv6 befassen!

Teil 2 IPv6 aus organisatorischer Sicht

IPv6 bei IT.Niedersachsen

- IT.Niedersachsen ist vorbereitet
- 2014: Projekt Evaluierung IPv6
 - Konzeptarbeit (Aufbau der Sub-LIR, Adressvergabe)
 - Erhebung IPv6-Bereitschaft
 - Migrationsstrategien
 - Risikoanalyse
 - Anpassung Sicherheitskonzepte
 - Datenschutzrechtliche Betrachtung
- 2014: Gründung der Sub-LIR []

Wer vergibt IP-Adressen?

Wer vergibt IP-Adressen?

Sub-LIR Niedersachsen

Strategische Sub-LIR Niedersachsen: MI

Rechtliche Verantwortung gegenüber der LIR

Budgetbereitstellung

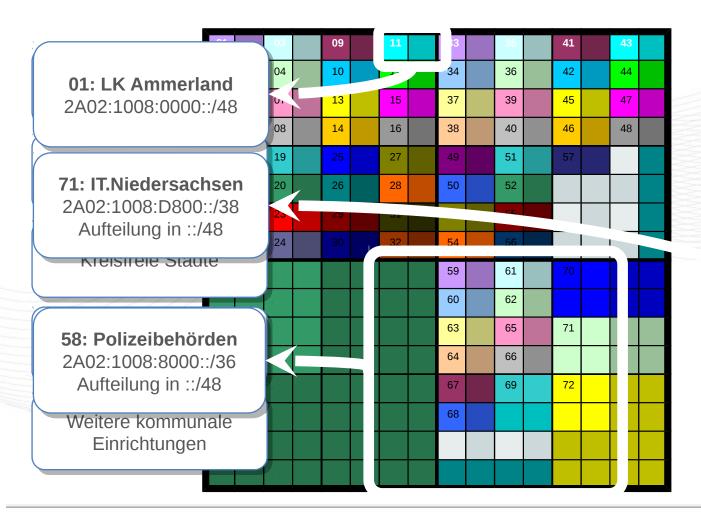
Rechte des Adressbereichs

Vorgabenerteilung

Operative Sub-LIR: IT.Niedersachsen

Beratung der IPv6-Interessenten

IPv6-Marketing


Betrieb des IP-Adress-Management-Tools

Prüfung von Adresskonzepten Rahmenkonzeption zur IPv6-Adressvergabe

Pflege der RIPE-DB

Zuteilung von IPv6-Adressbereichen Beteiligung an der LIR-IPv6-Arbeitsgruppe Verwaltung der DNS Reverse Delegation

Konzept der Adressraumplanung

Sub-LIR Niedersachsen

Adressraum

2A02:1008:0000:0000:0000:0000:0000:0000/32

Netze

 $2A02:1008::/32 \approx 4*10^9 /64-Netze$

Adressen je 464 Netz

18.446.744.073.709.551.616

Sub-LIR Niedersachsen - ToDos

- Gründung Kompetenzteam IPv6
- Planung und Einsatz IPAM-Tool
- Adressraumerweiterung
- Überarbeitung Adressrahmenkonzept
- IPv6 Einführungsplanung
- IPv6-Marketing

Teil 3 IPv6 aus technischer Sicht

Ziele der IPv6 Entwicklung

- Erweiterter Adressraum gegenüber IPv4
 - 2^{128} Adressen (≈ 3,4*10³⁸)
- Entlastung der Router
 - "einfacherer" IP-Header (immer 40 Byte lang)
 - Hierarchische Netztopologie
- Leichtere Administration durch Autokonfiguration
- Mehr Sicherheit IPsec ist IPv6-Standard
- Mehr Flexibilität Mobile IP ist IPv6-Standard

Notation einer IPv6 Adresse

- Beispiel: 2A02:821B:400:25C0::131
 - 8 Blöcke zu je 16 Bit, getrennt durch ":"
 - Länge: 128 Bit, also 2¹²⁸ Adressen
 - Blöcke werden als **hexadezimale** Zahlen geschrieben
 - Aufeinander folgende 0000-Blöcke können einmal pro Adresse durch "::" verkürzt werden
 - Angehängtes "/xx" gibt Länge des Netz-Anteils an
 - Bestandteile:
 - Netz-Anteil aus Prefix und SubNetID (64 bit)
 - Host-Anteil (64 bit)

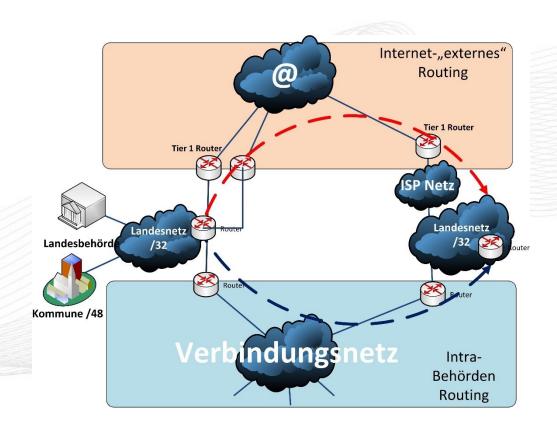
Prefix-Hierarchie

- 2000::/3 Prefix des gesamten, gerouteten IPv6-Internet
- 2A02:1000::/26 Adressbereich der dt. Verwaltung
- 2A02:1008::/32 Adressbereich der nds.Verwaltung
- 2A02:1008:D800::/38 IT.N Adressbereich (DOI-Netz)
 - 2001:638:607/48 IT.N Adressbereich (DFN-Netz)
 - 2A02:821B:4/48 IT.N Adressbereich (ncN-Netz)
 - 2003:40:1234:5678/56 typischer DSL-Prefix

Autokonfiguration

- 1. Host bildet mehrere link-lokale Adressen
 - Auf Basis der MAC-Adresse oder zufällig
- 2. Host sucht Router und "Nachbarn"
- 3. Host bildet Global Unicast Adresse(n)
 - Auf Basis des Prefix vom Router
- 4. Host stellt Standard Gateway, DNS u.a. ein
 - Auf Basis weiterer Informationen vom Router
- 5. Host bevorzugt IPv6-Verbindungen
- Autokonfiguration ist gefährlich!

Die niedlichen Katzenbilder...


...machen aus einem NiC einen Datendieb!

Autokonfiguration in "managed" Umgebungen deaktivieren!

IPv6 Routing-Konzept

- Einheitlicher Adressbereich 2A02:1000/26 der deutschen Verwaltung
- ITNetzG §3: Behörden-Kommunikation nur über Verbindungsnetz!
- Ausblick: EINE einfache Routing-Regel
- IPv6 Routing-Konzept wird im Sept. 2016 vom IT-Planungsrat beschlossen

ITNetzG-konformes Routing

"HEMER 2016"

- IPv6 Technik-Workshop
- Wann: 21. September 2016
- Ausrichter: IPv6-AG beim BMI
- Wo: KDVZ Citkomm
 - Sonnenblumenallee 3, 58675 Hemer
 - es stehen etwa 70 Plätze zur Verfügung
 - die Teilnahme ist für Mitarbeiter der öffentlichen Verwaltung in Deutschland kostenlos
 - bei Interesse erfolgt eine offizielle Einladung durch das BMI

